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abstractDeafness affects ∼2 in 1000 children and is one of the most common
congenital impairments. Permanent hearing loss can be treated by fitting
hearing aids. More severe to profound deafness is an indication for cochlear
implantation. Although newborn hearing screening programs have increased
the identification of asymmetric hearing loss, parents and caregivers of
children with single-sided deafness are often hesitant to pursue therapy for
the deaf ear. Delayed intervention has consequences for recovery of hearing. It
has long been reported that asymmetric hearing loss/single-sided deafness
compromises speech and language development and educational outcomes
in children. Recent studies in animal models of deafness and in children
consistently show evidence of an “aural preference syndrome” in which single-
sided deafness in early childhood reorganizes the developing auditory
pathways toward the hearing ear, with weaker central representation of the
deaf ear. Delayed therapy consequently compromises benefit for the deaf ear,
with slow rates of improvement measured over time. Therefore, asymmetric
hearing needs early identification and intervention. Providing early effective
stimulation in both ears through appropriate fitting of auditory prostheses,
including hearing aids and cochlear implants, within a sensitive period in
development has a cardinal role for securing the function of the impaired
ear and for restoring binaural/spatial hearing. The impacts of asymmetric
hearing loss on the developing auditory system and on spoken language
development have often been underestimated. Thus, the traditional minimalist
approach to clinical management aimed at 1 functional ear should be modified
on the basis of current evidence.

Deafness is one of the most common
congenital impairments.1,2 Newborn
hearing screening programs,
implemented in many countries, have
decreased the age at diagnosis of
hearing loss. When hearing loss occurs
in only 1 ear, the screening result
may be overlooked or dismissed as
unimportant, particularly when
hearing in the opposite ear is normal
(unilateral or single-sided deafness).
The consequence will be a failure to
intervene until long after major
developmental effects have set in,
which causes significant negative

clinical implications. Screening
programs will also miss children who
acquire deafness in 1 ear from
infection, trauma, or worsening of
preexisting hearing loss.3–6 Acquired
unilateral deafness can go unidentified
until educational, social, or other
impairments push families and
caregivers to seek medical consult.
Because the prevalence of permanent
unilateral hearing loss in neonates is
reported to vary from 0.45 to 2.7 in
10007,8 and estimates in school-aged
children range from 30 to 56 in
1000,9,10 awareness of medical
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professionals, and especially of
pediatricians, to this hearing disorder
is of crucial importance.

Asymmetric hearing loss can also
be established in children who have
profound hearing loss in both ears
by treating only 1 side. Since the
appearance of cochlear implants (CIs)
in clinical medicine, this therapy for
profound deafness has become very
effective.11 Of the .100 000 children
who presently use CIs worldwide,11

the majority have bilateral deafness
but are only implanted in 1 ear12;
they are, in effect, children with
asymmetric hearing loss.

In this State-of-the-Art Review, we
present evidence from basic and
applied neuroscience, audiology, and
otology that points to the existence
of an impairment of the central
representation of the poorer hearing
ear if developmental asymmetric
hearing is left untreated for years.
First, we review the current state of
the problem as viewed in the clinic.
Next, we consider the background
from well-controlled animal models,
in which investigations have ranged
from defined areas of the brain to
individual neurons. A review of
evidence from human brain imaging
and behavioral studies complement
the picture by highlighting effects
of single-sided hearing in children.
The combined data support our
contention that a preference for 1 ear
is established biologically,
functionally, and subjectively from
asymmetric hearing in early
development. This “aural preference
syndrome” requires rapid diagnosis
and intervention.

CURRENT STATE OF THE PROBLEM

One ear alone carries only limited
information regarding locations of
sound sources. Without this
information, hearing is degraded in
adverse listening conditions. Some
rooms pose particular problems
because acoustic sound waves easily
bounce between the walls, floor, and
ceiling, adding reflections that are

difficult to distinguish from the
original sound. Other situations are
challenging because .1 sound source
is present. Many people could be
speaking at a time such as in a typical
cocktail party13,14. For children,
common complex listening
environments include classrooms,
playgrounds, and school hallways
where they spend much of their daily
life. These can be more spatially
dynamic than the “cocktail party”
example because both the listener
and his/her peers tend to be on the
move.

Hearing from 2 ears (binaural) allows
precise localization of sound sources.
Time and level differences between
the ears are initially detected and
evaluated in the auditory brainstem
and midbrain.13 The listener uses
these cues to separate and distinguish
between sound sources in space,
thereby improving the signal-to-noise
ratio for complex sounds (binaural
unmasking) and separating original
sounds from their reflections
(precedence effect).15 Additional
benefits of binaural hearing are that
the ear closer to the sound source
can receive up to 20 dB louder input
than the other ear, providing an
advantage for speech comprehension
(better ear or head shadow effect)
and an improvement in hearing
sensitivity by ∼3 to 10 dB, which
provides increased accessibility
to sound (binaural summation/
redundancy effect or diotic benefit).
Although the pinna (outer ear) can
provide some localization ability from
1 ear alone by using spectral
cues,16,17 it is less precise than with
binaural hearing and works best if the
sound is broadband (containing many
frequencies) and is familiar to the
listener.

Without normal binaural hearing,
individuals with asymmetric hearing
loss have impaired sound localization
abilities, particularly in the hemifield
of the impaired ear,18 and
compromised speech understanding
in noise.19,20 Deficits in the

development of speech, language,
and cognition are well recognized
in children with unilateral
deafness,21–28 with reports of
increased effects for right-eared
impairments.19,29,30 A recent large-
cohort study indicated lower mean
vocabulary, verbal IQ, full-scale IQ,
and oral language scores in children
with unilateral hearing loss compared
with normal-hearing sibling
controls.20 These children have high
risks of educational problems,
including repeating at least 1 grade
and/or receiving individualized
educational assistance.31–36

Moreover, behavioral problems are
more prevalent.37 Individuals with
asymmetric hearing loss perceive
themselves to have significant
handicaps38 and exhibit reduced
quality-of-life scores compared with
normal-hearing peers.39 Importantly,
these issues are not captured by
a typical clinical hearing test
(audiogram), which measures
sensitivity to sound in a quiet
situation.

AUDITORY PROSTHESES PRESENTLY
USED TO AID ASYMMETRIC HEARING
LOSS

To date, treatment approaches for
unilateral hearing loss range from
“watchful waiting” to hearing
rehabilitation by means of a variety of
hearing devices, as shown in Fig 1,
depending on the child’s age, degree
and type of hearing loss, and listening
environment. These devices include
the following: a CI (Fig 1A), a hearing
aid (Fig 1B), a bone-anchored hearing
aid (BAHA) (Fig 1C), and a personal
assistive listening device (Fig 1D).

The most common auditory
prosthetic is the hearing aid, which
primarily amplifies sound so that it
is audible to the impaired ear
(Fig 1B). Although fitting a hearing
aid to the ear with hearing loss
has the potential of providing
bilateral stimulation, evidence for
effectiveness is limited to small
groups40 and is predominantly based
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on subjective reports of school-aged
children, parents, and teachers
(reviewed in refs 40 and 41).
The reality is that the initial
recommendation for hearing aid
amplification is rare41–43 and that
adherence to hearing aid usage is
poor.39,41–44 Underlying these
findings are the following:
considerable uncertainty regarding
clinical recommendations for
intervention in such cases, parents’

reluctance to fit a hearing aid in the
presence of a normal-hearing ear, and
restricted benefit in cases of severe-
to-profound hearing loss in which
high levels of gain may actually
stimulate the better hearing ear
through bone conduction. In the case
of maximum unilateral conductive
hearing loss due to microtia/atresia,
a BAHA can be fitted on the affected
side (Fig 1C). A BAHA contains
a sound processor coupled to the

head so that sound can be transferred
to both cochleae through vibration
of the skull rather than via the
external and middle ear.

An option that should be considered
for unilateral severe-to-profound
hearing loss is a CI (Fig 1A), as
performed in adults whose single-
sided deafness was accompanied by
intractable tinnitus.45,46 The use of
CIs in individuals with single-sided
deafness is supported by significant
improvements in speech
understanding in noise, localization
ability, and subjective hearing
benefits in adults (meta-analysis47).
Preliminary data on 3 children (aged
4, 10, and 11 years old) with
noncongenital unilateral hearing loss
after cochlear implantation provide
evidence for binaural benefits.48

An alternate solution is to send sound
from the ear with severe-to-profound
hearing loss to the better hearing
ear by contralateral routing of signal
(CROS) hearing aids.49 BAHAs have
also been provided on the side of the
impaired ear as an alternative to
CROS hearing aids. Sounds from the
impaired side are converted by the
BAHA into skull vibrations that
stimulate the opposite, better
functioning cochlea. The use of
BAHAs in children with profound
unilateral hearing loss remains
controversial, despite better speech
understanding in background noise50

and significant improvements in
quality of life.51 It is important to
remember that any therapeutic
approach that bypasses the impaired
ear, such as the CROS aid and BAHA,
will leave it untreated.

There are other assistive listening
devices to help the child with
asymmetric hearing loss. Frequency
modulated (FM) technology has long
been effectively used for increasing
the signal-to-noise ratio in individuals
with hearing impairments to hear
from a distance, in noise, and in
reverberant environments.52 FM
systems transmit the input from
a microphone worn by a speaker,

FIGURE 1
Auditory prostheses worn by children. A, CIs are indicated for ears with severe-to-profound deaf-
ness. Candidacy for cochlear implantation in children involves a comprehensive assessment of the
child, including radiologic assessment of the cochlea and auditory nerve, medical suitability for
surgery, confirmation that hearing aids do not provide adequate benefit, realistic expectations of
the child/family, and enrollment in an appropriate educational/therapy program.12 The external
equipment is shown. The ear-worn piece includes a microphone to pick up sound and a sound
processor that analyzes the sound for frequency and intensity over time. This information is sent to
the internal equipment through FM signals via the round transmitting coil, which sits on the child’s
head. It stays in place with a magnet that is attracted to another magnet in the internal device. The
internal device delivers electrical pulses to stimulate the auditory nerve. B, A hearing aid is shown
as worn on a child’s ear. Sounds are picked up by a microphone and amplified by gains specific to the
child’s hearing loss. The amplified sounds are sent via a tube into an earmold (here in blue) to the
child’s ear. For high-gain hearing aids, the earmold must seal sounds in the ear to avoid feedback
(whistling caused by a leak of amplified sounds back into the hearing aid microphone). C, A BAHA is
shown. The internal device vibrates the skull to stimulate fluid movement in the cochleae. Acoustic
sound is picked up by a microphone on the external equipment and sent to the internal device through
a direct connection (percutaneous abutment) or magnetic connection as in the device shown. The
device can also be secured by a soft band of elastic placed around the head. D, Two parts of an FM
system are shown. The equipment shown on the desk contains a microphone to be worn by speaker
(ie, a teacher) attached to a transmitter. The sound is transmitted by FM signal to a receiver worn by
the child in his better hearing ear (enlarged insert). The sound is sent to the ear via a tube connected
to an earmold. Little amplification is required, and thus the earmold is not sealed and allows other
sounds to enter the ear.
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typically a teacher, to a receiver
coupled to the open, good ear.
Advantages of FM technology in
improving word recognition have
been reported.49 Disadvantages of
FM systems include the hardware
required for both speaker and
listener and the presentation of
binaural cues to only 1 ear, precluding
their analysis and use.

ASYMMETRIC HEARING LOSS IN EARLY
DEVELOPMENT

Clinical studies show that the use of
a congenitally deaf ear may be limited
later in life even when the other ear
has early access to sound. In children
who are bilaterally implanted in
sequential procedures, outcomes of
speech perception using the second-
implant ear are significantly poorer
than the outcomes with the first
implanted ear.53–55 The difference in
performance increases as the delay
between implantation lengthens,56–58

and gains are particularly slow in
children who receive the second
implant after puberty.55 Similarly,
patients with unilateral atresia
exhibited a postoperative dichotic ear
advantage in the nonatretic ear that
was adjustable before, but not after,
puberty.59 If the single-sided deafness
occurs during adulthood, asymmetric
performance after treating the deaf
ear is not prominent.45,60,61 In a large
study involving 2251 individuals with
postlingual deafness, the implanted
ear was not a predictive factor for
outcomes62: results were similar
whether the ear with longer or shorter
duration of deafness was implanted.
This outcome difference between
sequential bilateral implantation in
adults and children provides evidence
for a developmentally sensitive period
for reorganization promoted by
asymmetric hearing.

Long periods of asymmetric hearing
in development also affect measures
of binaural hearing after bilateral
implantation. Whereas adults who
became deaf after childhood perceive
changes in both interaural level and

timing cues,63 the latter cues are not
detected either by children implanted
sequentially64 or by adults whose
deafness was present at birth.63

Nonetheless, both adults and children
benefit from using bilateral over
unilateral implants due to the
reduction in the head shadow effect
and binaural summation.65–67

Reducing the interimplant delay in
children appears to improve sound
localization68,69 and speech
perception in noise,70,71 providing
evidence for the importance of
bilateral input during early auditory
development.

PHYSIOLOGY AND PATHOPHYSIOLOGY
OF UNILATERAL HEARING

The mammalian brain is immature at
birth and can be manipulated by
changes to the input it receives
during development. The human
auditory system continues to develop
after birth, with auditory areas of the
cerebral cortex requiring more than
a decade of life to reach maturity.72,73

The circuitry for binaural processing
is inborn and functional soon after
hearing onset,74,75 but is sensitive to
manipulation of hearing,75–77 with
sometimes lifelong consequences
(reviewed in refs 13 and 78).

Evidence for an Aural Preference
Syndrome

When unilateral deafness occurs in
early development, the hearing ear
becomes overrepresented in the
auditory system.79–81 Novel auditory
projections from the hearing ear are
formed when experimental lesions
are induced in animals near birth but
do not occur in adult animals.81–86

Moderate unilateral hearing loss
leads to similar, although less
extensive, reorganization.77,87–89 The
consequences for the opposite deaf
ear remained unexplored until CIs
entered the scene. In congenitally
deaf white cats, CI stimulation
revealed that complete (binaural)
deafness reduces what has been
termed the normal “aural preference”

in the auditory cortices for the
contralateral ear.90–92 As shown in
Fig 2A, electrodes placed in the
primary auditory cortex of a hearing
cat reveal larger and faster responses
to contralateral than ipsilateral ear
stimulation.92 The wiring pattern of
the afferent auditory system can
explain this finding, in part, because
the majority of fibers cross
contralaterally at the brainstem.
Congenital deafness changes this
normal pattern; in bilateral deafness,
the normal contralateral aural
preference was reduced.92 (Fig 2B).
In unilateral deafness, on the other
hand, both cortical hemispheres
showed larger and faster responses
from the hearing ear (Fig 2 B and
D90,91). In this sense, congenital
single-sided deafness promotes an
abnormal aural preference in which
the representation of the better-
hearing ear is “stronger” (more
extensively represented in the
auditory system) and the other ear is
“weaker” (less well represented in the
auditory system). The early onset
of unilateral hearing thus puts the
deaf ear into a significant
disadvantage for competition for
cortical resources. These effects
decreased with increasing age
of onset of single-sided hearing,
signaling an early sensitive
period for unilaterally driven
reorganization.90,91 Importantly, the
responses for the deaf ear were not
completely eliminated in the feline
brain;91 this finding significantly
differs from effects of monocular
deprivation in which projections from
the sighted eye extensively take over
neurons originally responsive to the
deprived eye or both eyes.93 In the
case of unilateral deafness, even some
(although substantially weakened)
extraction of binaural cues was
preserved at the cellular level,75,94

suggesting that the reorganized aural
preference is not permanent and can
potentially be reversed. This is why
the term “aural dominance,” originally
proposed for aural cortical
representation in the auditory
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cortex,95 was softened to “aural
preference.”91

Supporting evidence for
a developmental change toward
abnormal cortical aural preference is
available in humans with asymmetric
hearing who did not receive
treatment. Various imaging
techniques have been used, including
electroencephalography and
functional MRI. A number of studies
documented a stronger than normal
representation of the hearing ear at
the cortex ipsilateral to the hearing
ear in adult onset of single-sided
deafness.96–101 This change resulted
in a more symmetric activation of
both auditory cortices from the
hearing ear.101–107 The differences
from normal were larger when the
loss occurred in the right ear

compared with the left ear.103,104,108

More extensive effects, including
recruitment of additional cortical
areas/networks, were observed in
children with unilateral hearing
loss,109–113 in line with the increasing
effects found in younger cats90,91

and the language, cognitive, and
educational challenges these children
are reported to have (discussed in
“Current State of the Problem”
section above).

Further support for abnormal aural
preference comes from children who
receive bilateral CIs sequentially.
Although expected cortical
electrophysiologic responses were
measured from the first implanted
ear, responses from the second, later-
implanted ear remained
abnormal.114–117 The developing

auditory brainstem, the first point of
binaural integration in the ascending
pathways, is already affected.
Brainstem responses rapidly change
over the first year of unilateral CI use
in children with early-onset
deafness.118,119 When the opposite
(second) ear was implanted after this
period (.1.5 years), the brainstem
responses from this ear remained
abnormally prolonged despite up to 3
years of bilateral implant use
(Fig 3120,121). By contrast, bilateral
implantation with minimal or no
delay in early development promoted
symmetric maturation of the
responses for both ears.120 Cortical
responses of sequentially implanted
children revealed a reduction in
normal contralateral aural preference,
consistent with the animal studies

FIGURE 2
Summary of the results of cortical responsiveness from binaural hearing, binaurally congenitally deaf, and single-sided hearing cats, obtained by
microelectrode mappings (.100 recording positions) of cortical local field potentials in the primary auditory cortex (field A1) evoked by CI stimulation.
Shown are maximum positive amplitudes as a function of recording position. A, In a hearing control, similar to acoustic stimulation, electrical stimulation
at the contralateral ear results in larger responses and shorter latencies (color denotes onset latency) compared with ipsilateral stimulation.
Consequently, there is an aural preference for the contralateral ear. B, In a single-sided hearing cat if the hearing ear is the ipsilateral ear, the aural
preference reverses: ipsilateral responses become larger and appear earlier (color). C, Summary of the binaural cats. Normal-hearing cats show
a contralateral aural preference. In binaurally deaf cats, the contralateral aural preference is weakened but not reversed. D, In unilaterally hearing cats,
aural preference reverses at the ipsilateral hemisphere to the hearing ear and stronger responses are observed for the hearing ear in both
hemispheres. Rudimentary responsiveness for the deaf ear is, however, preserved. Thus, a “stronger” and a “weaker” ear effect results. Data and figures
were modified from refs 91 and 90, respectively.
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(Fig 4122). Importantly, this abnormal
asymmetry was not found in children
who received bilateral implants
with ,1.5 years of interimplant delay
(short delay or simultaneous bilateral
implantation). Protection against
aural preference to 1 ear thus
requires bilateral input during
development.

The change in aural preference from
the contralateral ear to preference for
the hearing ear in both cats and
children91,122 may reflect differential
reorganization of inhibition and
excitation in both hemispheres,
ie, hemisphere-specific
reorganizations.84–86,90,123 Because
of the earlier development of
inhibitory synapses,124,125 there is
a shorter sensitive period for the
change in aural preference at the
hemisphere ipsilateral to the hearing
ear91 and a longer sensitive period
for the hemisphere contralateral to
the hearing ear.90 In other words,
single-sided deafness leads to an
asymmetric brain that shows distinct
adaptations at the 2 hemispheres,90

which both result in boosting
responses from the hearing ear.
Stronger representation of the
hearing ear in developmental single-

sided deafness will lead to a biased
input to higher-order cortical areas
and cognition. Behaviorally, it is likely
further aggravated by subjective
factors such as an attentional bias
toward the better-represented ear. In
this context, the aim of treating
asymmetric hearing loss is to prevent
this reorganization.

IMPORTANT FACTORS FOR A NEW
TREATMENT OF ASYMMETRIC HEARING
LOSS

Single-sided hearing, due to
reorganization toward the hearing
ear, likely protects from hearing and
language deficits associated with the
completely deaf brain (reviewed in
refs 126 and 127), including
immature cortical circuits, cross-
modal reorganization, and reduced
plasticity (reviewed in refs 78 and
128). Initial acquisition of speech and
language by children with single-
sided deafness has made the hearing
loss difficult to identify in the absence
of neonatal hearing screening
programs and has also fueled
arguments against treatment. Yet, by
the time challenges in spatial hearing
and listening in noise have been
found, these children often are

school-aged,21,129 long after many of
the changes reviewed above have
already occurred. The increased age/
duration of deafness will thus limit
the potential benefits of hearing aids,
as already reported,130 or of CIs.
Treatment is thus important and
cannot be delayed.

Despite the increased representation
of the hearing ear in the brain, the
representation of the deaf ear does
not vanish completely (Fig 2).
Moreover, residual sensitivity for
binaural cues persists in cochlear-
implanted humans,120 in
experimental animals with
asymmetric hearing,77,87 and in
congenital deafness.75,94 Thus, even
in the worst condition (early onset,
long duration of single-sided
deafness), there is some hope for
stimulating hearing in the deaf ear
and establishing binaural hearing,
with demonstrable benefits already
realized.64–66,68–70,131–134 On the
other hand, these skills remain
abnormal, reflecting persistent
reorganization after single-sided
hearing. Without focused training,
3 to 4 years of bilateral implant use
was not sufficient to reduce the
preference of the first-implanted ear

FIGURE 3
A, EABR wave eV evoked by the CI-1 (right implant) and CI-2 (left implant) are at similar latencies to the BD in a child receiving both implants
simultaneously. B, A period of unilateral CI use before bilateral cochlear implantation reduces wave eV latency evoked by CI-1 and the response from
CI-2 remains delayed despite 2 years of bilateral CI use. The BD is delayed relative to the CI-1–evoked wave eV. C, CI-2–evoked wave eVs are
significantly prolonged relative to CI-1 when the period of unilateral CI use exceeds 2 years. Plots were reprinted from ref 120, Fig 3. BD, binaural
difference component; EABR, electrically evoked auditory brainstem response; eII, the second wave of the EABR; eIII, the third wave of the EABR; eV, the
fifth wave of the EABR.
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in the auditory cortices of children
implanted sequentially with a long
delay.122 Although these children
learned to detect large changes in
binaural timing cues after long
periods of bilateral implant
experience, they continued to judge
input as coming from the side of their
first implant more often than children
receiving bilateral implants
simultaneously.134 Furthermore,
although speech perception was
gained in the weaker ear, the progress
was slow and did not match the
stronger ear even after 5 to 9 years of
implant use.58 Poor speech
perception55 together with absent
cortical binaural interaction135 in
children receiving the second implant

as adolescents suggest that there are
continued difficulties in processing
input from the second-treated ear.
Overall, the data indicate that an early
period of monaural hearing as brief as
1.5 years has long-lasting
consequences.

RECOMMENDATIONS FOR
IDENTIFICATION AND TREATMENT OF
ASYMMETRIC HEARING LOSS

Combining the available evidence,
we propose the existence of an
“aural preference syndrome,”
characterized by a combination of
following factors:

1. asymmetric hearing during
development;

2. asymmetric speech understanding
in each ear that is resistant to
treatment (ie, persisting after
compensation of the initial asym-
metry); and

3. deficits in binaural hearing, in-
cluding sound localization, re-
sistant to therapy of the weaker
ear.

Awareness of the problem is
important. On the basis of recent
evidence, a more aggressive approach
to treating asymmetric hearing loss in
children appears to be justified, with
the following objectives:

1. early identification of hearing loss
that is more pronounced in 1 ear
than the other;

FIGURE 4
A–D, Schematic representations of the strength of pathways from each ear (right ear in red, left ear in blue) to the contralateral and ipsilateral auditory
cortices are shown. E, Mean (SE) dipoles measured in the left (blue) and right (red) auditory cortices.122 Contralateral activity is normally stronger than
ipsilateral activity. Bilateral pathways are essentially symmetric in children receiving bilateral input in early development (normal-hearing, simultaneous
bilateral implants, short delay between implants). Unilateral right implant use strengthens pathways to both contralateral and ipsilateral auditory
cortices, increasing dipoles in the left auditory cortex and reversing aural preference to the first implanted right ear. Data from ref 122. CI-1, first implant;
CI-2, second implant.
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2. a reduction in asymmetric hearing
by providing appropriate auditory
prostheses* in each ear with
limited delay; and

3. provision of auditory-based
training to limit possible effects
of “aural preference” for the
stronger hearing ear.

GAPS IN KNOWLEDGE

The treatment of asymmetric
hearing loss has traditionally
occurred late or not at all. As this
impairment becomes better
recognized and more aggressively
treated, we will be better able to
define when aural preference
becomes abnormal, to determine
which treatment is most
appropriate, and to delineate factors
that contribute to the best outcomes
of treatment. Timing of treatment
will be essential and must consider
both the age of the child and his/her
hearing experience within the
context of critical periods of
development. More research on the
mechanisms of plasticity and critical
periods as well as the exact
delineation of their limits in
different species are required
to understand the full potential for
reversibility. For clinical purposes,
further aspects require attention:
Did the asymmetry of hearing exist
after a period of bilateral deafness?
Was the asymmetry experienced in
early or later childhood and did the
asymmetry progressively increase
over time? Furthermore, how much
asymmetry in hearing will lead to
abnormal aural preference and
can this condition be reversed
during or after important stages
of development? What minimal
extend of the asymmetry may lead
to aural preference? Finally, to what
extent can the child’s hearing devices
provide sufficiently symmetric
hearing? For example, bimodal

hearing (CI in 1 ear and a hearing aid
in the other) provides benefits over
unilateral listening132,136–142 but
may not necessarily avoid or
reverse asymmetric aural
preference or provide accurate
binaural cues.

The potential for reversing the
preference for the stronger ear
exists. After developmentally mild
asymmetric hearing loss was
restored in ferrets, localization
training restored their spatial
hearing abilities.17,143 Although
long durations of bilateral implant
use do improve some of the
children’s ability to use both ears
for listening, active training is likely
necessary to overcome the
significant developmental effects of
previous unilateral hearing.
Paradigms for training in
children need to be developed.
The treatment of asymmetric
hearing loss must keep in mind that
normal asymmetries between the
ears do exist, with evidence in
both normal-hearing144 and
cochlear-implanted145,146 children
of a “right ear advantage” for speech
processing. Finally, the goal of
establishing normally symmetric
bilateral hearing in children is
to promote binaural hearing.
The use of independent
devices and fitting paradigms
that presently concentrate on
the function of each device
separately could be improved to
provide more accurate binaural
cues (eg, ref 147).

SUMMARY: TREATMENT OF
ASYMMETRIC HEARING LOSS

On the basis of evidence of abnormal
reorganization driven by single-sided
hearing, a binaural simultaneous
therapy should become the gold
standard for early bilateral deafness.
If asymmetric hearing has been
identified, early restoration of hearing
symmetry should be the goal with the
use of appropriate auditory
prostheses.

ABBREVIATIONS

BAHA: bone-anchored hearing aid
CI: cochlear implant
CROS: contralateral routing of

signal
FM: frequency modulation
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CARSIGNALS:Mywifeand Ihavebeen lookingatnewcarsduring thepastweek.We
do not own a carmade in this millennium, andwere looking for a reliable all-wheel
drive car that was safe in the snow. We were fairly open-minded about what we
wanted, so we looked at many different cars from diverse manufacturers. We also
got lots of interesting advice from friends and family. My daughter scoffed when I
toldher Iwantedaspecificcar inred, retortingthat theparticularmodelwasclearly
notsporty,wasdesignedforoldmenlikeme,andthat I shouldstickwithabasiccolor.
For a brief time, mywife decided that shewanted awhite car because it would send
amessage (orat leastuntil I toldher thatwhite is themost commoncolorofnewcars
sold in the US and theworld). It seems thatwhat type of car one purchases and even
the color can say a lot about the buyer.
As reported inTheNewYorkTimes (Real Estate: April 9, 2015),wealthy car drivers
have very particular buying preferences which vary by zip code. For example, in
BeverlyHills, luxury carbuyerspreferMercedes,while in theSanFranciscoBayarea
they prefer the TeslaModel S, and inNewYork City they prefer theBMWX5. Surveys
completed bymore than 300,000 car buyers, between September 2013 and August
2014, showed that car choice correlates with a myriad of personal characteristics
and interests. It turns out that bridge and poker are popular pursuits among
Mercedes-Benz S Class buyers, while NewYork BMWX5 buyers enjoy bowlingmore
than those who buy other luxury brand cars.
I certainly do not plan to fill out a survey after we finally purchase a car, but if I do,
Iamprettysure that themost importantreasonthatwepurchasedthecar isbecause
my wife liked it the most.

Noted by WVR, MD

PEDIATRICS Volume 136, number 1, July 2015 153


